136 research outputs found

    On the ergodic sum-rate performance of CDD in multi-user systems

    Full text link
    The main focus of space-time coding design and analysis for MIMO systems has been so far focused on single-user systems. For single-user systems, transmit diversity schemes suffer a loss in spectral efficiency if the receiver is equipped with more than one antenna, making them unsuitable for high rate transmission. One such transmit diversity scheme is the cyclic delay diversity code (CDD). The advantage of CDD over other diversity schemes such as orthogonal space-time block codes (OSTBC) is that a code rate of one and delay optimality are achieved independent of the number of transmit antennas. In this work we analyze the ergodic rate of a multi-user multiple access channel (MAC) with each user applying such a cyclic delay diversity (CDD) code. We derive closed form expressions for the ergodic sum-rate of multi-user CDD and compare it with the sum-capacity. We study the ergodic rate region and show that in contrast to what is conventionally known regarding the single-user case, transmit diversity schemes are viable candidates for high rate transmission in multi-user systems. Finally, our theoretical findings are illustrated by numerical simulation results.Comment: to appear in Proceedings of 2007 IEEE Information Theory Workshop (ITW) in Lake Taho

    Achievable and Crystallized Rate Regions of the Interference Channel with Interference as Noise

    Full text link
    The interference channel achievable rate region is presented when the interference is treated as noise. The formulation starts with the 2-user channel, and then extends the results to the n-user case. The rate region is found to be the convex hull of the union of n power control rate regions, where each power control rate region is upperbounded by a (n-1)-dimensional hyper-surface characterized by having one of the transmitters transmitting at full power. The convex hull operation lends itself to a time-sharing operation depending on the convexity behavior of those hyper-surfaces. In order to know when to use time-sharing rather than power control, the paper studies the hyper-surfaces convexity behavior in details for the 2-user channel with specific results pertaining to the symmetric channel. It is observed that most of the achievable rate region can be covered by using simple On/Off binary power control in conjunction with time-sharing. The binary power control creates several corner points in the n-dimensional space. The crystallized rate region, named after its resulting crystal shape, is hence presented as the time-sharing convex hull imposed onto those corner points; thereby offering a viable new perspective of looking at the achievable rate region of the interference channel.Comment: 28 pages, 12 figures, to appear in IEEE Transactions of Wireless Communicatio

    Delivery Time Minimization in Edge Caching: Synergistic Benefits of Subspace Alignment and Zero Forcing

    Full text link
    An emerging trend of next generation communication systems is to provide network edges with additional capabilities such as additional storage resources in the form of caches to reduce file delivery latency. To investigate this aspect, we study the fundamental limits of a cache-aided wireless network consisting of one central base station, MM transceivers and KK receivers from a latency-centric perspective. We use the normalized delivery time (NDT) to capture the per-bit latency for the worst-case file request pattern at high signal-to-noise ratios (SNR), normalized with respect to a reference interference-free system with unlimited transceiver cache capabilities. For various special cases with M={1,2}M=\{1,2\} and K={1,2,3}K=\{1,2,3\} that satisfy M+K≤4M+K\leq 4, we establish the optimal tradeoff between cache storage and latency. This is facilitated through establishing a novel converse (for arbitrary MM and KK) and an achievability scheme on the NDT. Our achievability scheme is a synergistic combination of multicasting, zero-forcing beamforming and interference alignment.Comment: submitted to ICC 2018; fixed some typo

    On a closed form solution to the constant modulus factorization problem

    Get PDF
    We consider the problem of separating independent constant modulus signals received by an antenna array. Assuming that the statistics of the phases of the signals are known, we derive a closed form solution for the array response vector from which the original signals can be recovered. Our method is based on estimating the higher order statistics of the received signals and the estimate of the array response vector is shown to be asymptotically unbiased. Simulation results are included to demonstrate the feasibility of the algorithm

    Low-Complexity MMSE Precoding for Coordinated Multipoint with Per-Antenna Power Constraint

    Get PDF
    • …
    corecore